Consider the Design and Analysis of Antennas for a modern Smartwatch

By Tracey Vincent
Smart watch design

1. Overview of a modern smart watch.
2. Challenges posed for the antenna design engineer.
3. An example design.
4. Discuss some approaches in relation to:
 - Electromagnetic design and analysis
 - Mechanical design and co-design
 - Meeting regulatory standards

Examples developed in collaboration between CST, Magus and SIMULIA
A modern smart watch

- Casing and strap
A modern smart watch

- Casing and strap
 - Must be practical size
A modern smart watch

- Casing and strap
 - Must be practical size
 - Aesthetics and materials
A modern smart watch

- **Casing and strap**
 - Must be practical size
 - *Aesthetics and materials*

- **Touchscreen**
A modern smart watch

- Casing and strap
 - Must be practical size
 - Aesthetics and materials

- Touchscreen
- Battery and charging
A modern smart watch

- Casing and strap
 - Must be practical size
 - Materials and aesthetics

- Touchscreen
- Battery and charging
- Electronics
A modern smart watch

- Casing and strap
 - Must be practical size
 - Aesthetics and materials

- Touchscreen
- Battery and charging
- Electronics
- Flexibility and functionality
Concept design

- Modular strap.
- Connected to watch body.
- Interchangeable modules.
- User customization.

- Large screen.
- Differentiate touch and tap.

- Bluetooth, Wi-Fi, GPS and GSM capable

- Wireless charging required.
Concept design

- Standard mating connectors between modules / to watch body.
- Continuous ground plane, data and power lines

- Maximize data transfer rates achievable between strap modules (>1 Gb/s)
- Minimize interference risk
- Adhere to exposure standards
- Optimise for mechanical reliability and manufacture methods

- Aluminium/polycarbonate casing
- Polycarbonate strap/module housing
Design process

Antenna Design

Sub-system design (touchscreen, charging, etc.)

Mechanical design (touchscreen, connectors, etc.)

EM Simulation

Mechanical analysis
Concept design - Connectivity

- WiFi (2.401 - 2.495 GHz)
- Bluetooth (2.4 - 2.485 GHz)
- GPS (1.563 - 1.587 GHz)
- GSM/Cellular (e.g. 880 - 960 MHz)
- S11 < -10 dB
- Best possible radiation efficiency
Antenna requirements

- Fit within the space available
- Efficient and well matched antennas (power use)
- Work alongside other electronics/systems
- Cater for different usage scenarios and environments
- Adhere to safety standards
Antenna challenges: Space
Antenna challenges: Space

- WiFi (2.401 - 2.495 GHz)
- Bluetooth (2.4 - 2.485 GHz)
- GPS (1.563 - 1.587 GHz)
- GSM (880 - 960 MHz)

Freespace wavelength/2

~70 mm
Antenna challenges: Space

- Metal casing (Aluminum)
- Strap module and electronics
- Touchscreen with conductive sensing grid
- Watch PCB
- Battery
- Metal/polycarbonate underside
- Wireless charging coil and circuitry
WiFi and Bluetooth antennas

Published papers

Design of a Compact UWB Diversity Antenna for WBAN Wrist-Watch Applications
*Seungmin Woo, Jisoo Baek, Hyungsang Park, Dongtak Kim and #Jaehoon Choi
Department of Electronics and Computer Engineering, Hanyang University 17 Haengdang-Dong, Seongdong-Gu, Seoul, 133-791, Korea

Conformal Bluetooth Antenna for the Watch-Type Wireless Communication Device Application
Chih-Hsien Wu* (1), Kin-Lu Wong (1), Yuan-Chih Lin (1), and Saou-Wen Su (2)
(1) Department of Electrical Engineering
National Sun Yat-Sen University, Kaohsiung 804, Taiwan
(2) Technology Research and Development Center
Lite-On Technology Corp., Taipei 114, Taiwan

Published papers
WiFi / Bluetooth antenna - option 1
WiFi / Bluetooth antenna - option 1
Choose application
Choose application
Choose application
Choose antenna
Choose antenna
Automatic design

Dual-band planar inverted-F (PIFA) with parasitic element

Specification
WLAN 2.4 (802.11b/g/n) 1

Prototype Designs and Tweaks
- WLAN 2.4 (802.11b/g/n) 1

Design Info:
- Frequency Band 1
 - f_L = 2.45 GHz
- Frequency Band 2
 - f_H = 4.9 GHz

Dimensions:
- X: 17.21 mm
- Y: 17.21 mm

Performance:
- Impedance vs frequency
- Radiation pattern (θ = 0°)
- Radiation pattern (θ = 90°)
- Radiation pattern 2D (first)
- WLAN 2.4 (802.11b/g/n) 1
 - [2.450 GHz]
- Radiation pattern 3D (oct)
- WLAN 2.4 (802.11b/g/n) 1
 - [4.807 GHz]
Adjust specification
Learn about the antenna limitations
WiFi / Bluetooth antenna - option 1
WiFi / Bluetooth antenna - option 2

Conformal Bluetooth Antenna for the Watch-Type Wireless Communication Device Application

Chih-Hsien Wu*(1), Kin-Lu Wong(1), Yuan-Chih Lin (1), and Saou-Wen Su (2)
(1) Department of Electrical Engineering
National Sun Yat-Sen University, Kaohsiung 804, Taiwan
(2) Technology Research and Development Center
Lite-On Technology Corp., Taipei 114, Taiwan
WiFi / Bluetooth antenna - option 2
WiFi / Bluetooth antenna - position

Polycarbonate
‘Windows’
WiFi / Bluetooth antenna - option 2
WiFi / Bluetooth antenna - option 2
WiFi / Bluetooth antenna - option 2
WiFi and Bluetooth antennas
WiFi and Bluetooth antennas
WiFi and Bluetooth antenna

WiFi/Bluetooth

S-Parameters [Magnitude in dB]

- Frequency / GHz
- Magnitude / dB
WiFi and Bluetooth antennas

Watch on arm
WiFi and Bluetooth antennas

Watch off arm
WiFi and Bluetooth antennas

- WiFi and Bluetooth antennas designs are shown with red crosses indicating incorrect designs.
- Green check marks indicate correct designs.

Detailed diagrams showing dimensions and specifications are present, but the exact values are not readable from the image.
WiFi and Bluetooth antennas
GPS antennas

- GPS signals are Circularly Polarised
- Traditionally patch antennas or helix variants are used for GPS applications
- Literature and Antenna Magus designs show that these antennas are too large
GPS antennas

- Inverted-F type antenna designed for GPS housed in the watch body
- The GPS antenna is poorly matched and realised circularly polarised gain is poor
- Performance varies on or off the wrist
We would like improved axial ratio and efficiency.

A high-performance GPS strap module could be used.

Largely immune to usage scenario.
GPS antennas

GPS on-board

GPS Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Farfield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximation</td>
<td>enabled (kR >> 1)</td>
</tr>
<tr>
<td>Monitor</td>
<td>farfield (f=1.5) [1]</td>
</tr>
<tr>
<td>Component</td>
<td>Ludwig 3 Right</td>
</tr>
<tr>
<td>Output</td>
<td>Gain</td>
</tr>
</tbody>
</table>
What about GSM?

At lower frequencies (e.g. GSM 900) more space than is available in the casing is needed

Published papers

Antenna Designs of Smart Watch for Cellular Communications by using Metal Belt

Kun Zhao\(^1\), Zhinong Ying\(^2\), Sailing He\(^1\)

\(^1\) Department of Electromagnetic Engineering, Royal Institute of Technology, Stockholm, Sweden
\(^2\) Corporate Technology Office, Sony Mobile Communication AB, Lund, Sweden
What about GSM?

- Use the strap like a dipole
- Investigate and design by simulation with simplified ‘canonical’ models
- Will it work with the modular strap?
- How will electronics be influenced?
What about GSM?
What about GSM?

For GSM850/900 only 5 of the 6 strap modules should be connected to form the antenna.
Modelling the environment
Modelling the environment
Antenna challenges: Exposure

- European standard for limbs:
 - SAR (Specific absorption rate) should be less than 4 W/kg averaged over 10 g

Transmitter:
- 2W peak power
- Active for 1/8th of every second
- 0.25W RMS input power
Concept design

- Maximize data transfer rates achievable between strap modules (>1 Gb/s)
- Minimize interference risk
- Large screen.
- Differentiate touch and tap.
- Bluetooth, Wi-Fi, GPS and GSM capable
- Wireless charging required.
- Optimise mechanical reliability
Analysis - mechanical reliability

- Many studies and optimizations possible
 - Reliability of strap module connectors
 - Material choices and manufacture methods
 - Drop test simulation
 - Etc.
Analysis - Touch Screen

Movement of finger

Capacitance Values

C_y_6, GND

C / pF vs. offset_x / mm

4.7 4.75 4.8 4.85 4.9 4.95 5 5.05

0 2 4 6 8 10 12 14 16 18
Analysis - Touch Screen

Considering deformation due to finger pressure on glass

Capacitance

Undeformed

2.304e-012

Deformed

2.05785e-012

Electric field lines

Mechanical and EM co-simulation
Analysis - Wireless charging
Analysis - Wireless charging

Magnetic Field @ 6.78MHz
Analysis - Modular electronics

“Bus”
Analysis - Modular electronics

“Daisy chain”
Analysis - Modular electronics
Analysis - Signal Integrity

Eye Diagram - 1.5Gb/s

<table>
<thead>
<tr>
<th>“Daisy-chain”</th>
<th>Achieved</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfer Rate</td>
<td>1.5Gb/s</td>
<td>1Gb/s</td>
</tr>
<tr>
<td>Eye Opening</td>
<td>0.3mV</td>
<td>0.2mV</td>
</tr>
</tbody>
</table>
Analysis - Signal Integrity
Designing in a system

- Each antenna and subsystem design requires assumptions about other system components
- An understanding of the interaction between sub-systems and the shared impact of design choices takes time to evolve
- Each component design needs to be refined, leveraging understanding of this interaction
- An integrated, multi-disciplinary toolset is critical in this process
First antenna concepts

GSM antenna using the strap and casing body

IFA-type antennas for Wifi/Bluetooth and GPS

High-performance GPS module
A first design concept
Thank you