Simulating Dielectric and Conductor Loss Including surface roughness

Tracey Vincent

Overview

- Loss components
 - Conductor:
 - Skin effect
 - Simulating surface roughness:
 - Tabulated surface impedance: Hammerstad, Huray
 - 3D models- Periodic surface, random surface
 - Effective Dielectric method (Dr. M. Koledintseva)
 - Dielectric:
 - Theory and parameters
 - Nth order curve fitting

Using Measurements and Simulation to extract material parameters
 Discussion and conclusion

Loss Components

Simulating Conductor Loss

Skin Effect Theory

Current density increases at extremities at RF frequencies

Skin Effect - Lossy Metal

Surface Roughness Parameterization - Features

Change conductivity. Narrow band "quick" parameterization:

skindepth and Sur	face Rough 💌						
Frequency [GHz]	1						
Conductivity [S/m]	58000000						
mue_relative	1						
Roughness [um]	0						
Skin-Depth = 0.002090mm (project unit)							
Effective Conductivity for Rough Surface:							
eff. cond. = 58,000,000.00 S/m							
ОК	Cancel						

Tabulated Surface Impedance (Broadband)	×
General Settings Material folder: Main folder: Material name: TabulatedSurfaceImpedance Restore Setting	Number of frequency samples: 21 Log sampling B Error limit for data fit: 0.03
Special Settings Configuration: Dire layer Surface roughness modet Enforce causality (experimental) For DC resistance: Width-to-height ratio of total cross section: Coated side walls	
$\begin{tabular}{ c c c c c } \hline & & & & & \\ \hline & & & & & \\ \hline & & & & &$	Inner Layer Thickness2 [mm]: 3 Conductivity2 [S/m]: 5.9e7 Mue_r2 (Function of FT): 1 DeltaRMS2 [um]: 1 Sphere radius [um]: 0.5 Number of spheres: 70 Hexagonal area [um^22]: 100

Comparison of Results for Simple Model

Measured and Simulated Data for Stripline

Port1_e1 (peak)				1	1	1	ł	+	1	1	t	1	1	(t	4	÷.	-
Frequency:	15		-	3 9	1	٩	1	1	*	1	1	1	P	1	1	1	20
Phase:	20				4	5	*	ð	2	1	1		2	1	1	100	
Line Imp. [Ohms]:	43.99				2	2	2	3	Ŧ	Ă	Ţ	£	T.	6	2		1
Wave Imp. [Ohms]:	308.8					-	-	-li-	2			-	1	-			.,
Beta [1/m]:	560.8					-	-	1	÷	+	ŧ	-	1	-	-	-	
Accuracy:	1.704e-11			23	4	1	*	×	Ŧ.	ł	4	3	3	1	7	•	2
Mode type:	TEM			1	*	1	1	1	1	1	1	1	1	3	1	1	
Maximum:	8.438e+05	100	1	200	•	*		*	9		\$	-	3	1	20	ે	10
Plane at y	-25																

----- S21 Lossy copper ----- S21 Measured data ----- S21 PEC ----- S21 TSI H&J

FR4 dielectric substrate $-\epsilon r=3.5$, tg $\delta=0.06$

50mm long stripline model

<u>Analytical Face</u> surface. Periodic example.

Face Distortion Surface

Trace generated has random distortions, specifications are: peak to peak height, average distance between peaks

New Analytical Method "Roughness Dielectric" - Concept

Fig. 6. Magnified section of the signal trace conductor in the SEM picture of the test line with STD foil. The region of the "roughness dielectric" is selected by a dashed line

Reference: Koledintseva, Razmadze, Gafarov, De, Drewniak, Hinaga "PCB Conductor Surface Roughness as a Layer with Effective Material Parameters" Electromagnetic Compatibility (EMC), 2012 IEEE International Symposium 2012

"Roughness Dielectric" - Extracting the parameters

Reference: Koul, Koledintseva, Hinaga, Drewniak "Differential Extrapolation Method for Separating Dielectric and Rough Conductor Losses in Printed Circuit Boards" IEEE Trans, 2012.

•Curve fitting co-efficients are generated K1 ~ $\int \omega$, K2 ~ ω , and K3 ~ ω^2

K1(0), K2(0), and K3(0) corresponds with smooth conductor, allow separation of surface roughness loss and dielectric loss. K co-efficients relate to Ar
Dielectric material (smooth) 3D object with extracted "roughness" parameters can be included in simulation to simulate roughness impact

"Roughness Dielectric" - Concept

Cross section view - Not to scale for presentation purposes only

- Laminate dielectric parameters are extracted from DERM2 (for both α and β).
- Heights of ERD $T_{r \text{ foil}}$ are taken $2A_{r \text{ foil}}$, respectively.
- Line length for this model = 15,410 mils

Comparison of S21 Results

Design Curves

Simulating Dielectric Loss

Dielectric Loss Theory - 1st Order Debye Dispersion

Dielectric Material Theory

- Such dielectric behavior can be modeled by including many relaxation terms, each localized around different frequency.
- Common PCB/package dielectric materials exhibit gradual change in dielectric constant over a very broadband frequency range.

Dielectric Loss - Causality

Definition: in any passive circuit, the effect always has to follow the cause.

"The man who shoots faster than his **shadow**""The shadow shoots the man?!?"

Sources of non-causality: Measurement, simulation (resonance, round error, interpolation, and extrapolation), and data manipulation.

Time domain solvers are broadband, curve fitting will retain causality.

Dielectric Loss - Curve fitting Nth Orders

- Why nth order?
 - The transient solver is broadband (often more broadband that device modeled), dispersive materials: fit required.
 - nth order Debye/Lorentz fit more accurate than simple Debye or Lorentz models.

Curve Fitting Comparison - S21 Results

Dielectric Loss - Curve Fitting Nth Orders - S21 Results

Dielectric Loss Characterization

- What if you don't have sufficient material properties for your simulation?
 They can be extrapolated (and simulation can help)
- Simulation can be used to Characterize Dielectric properties.
 Different methods: Full Sheet Method, Ring Resonator, 2 through lines

FSR with Electric Shield - Results

0.2 mm

Extracting dielectric parameters with FSR

Dielectric Loss Characterization - Ring Resonator

- Novel thru-line technique: calibration standards
 Thru and Line are much larger than $\frac{\lambda}{4}$
- Longer length increases sensitivity to substrate loss
- MACRO for automated extraction
- Research by CST and Czech Technical University in Prague.

Dielectric Loss Characterization - Two Through lines

Transmission Coefficient [Magnitude]

Transmission Coefficient [Phase in Degrees]

High quality end-launch connectors should be used in order to keep constant error model of the coaxial to microstrip line transition (NO soldering of the connectors!)

Automatic extraction Macro

🕿 Extract complex permitivity (broadband)	Σ
Select extraction technique	
TL5e (3D EM extraction)	
Import propagation constant (egL) (3D EM extraction)	
TL5e w/o permittivity extraction (DUT)	
Material properties (datasheat)	
Ex 3.66 Ex" 0.01464 O Loss tangent 0.004	_
Select material R04350 💌	
Load measured data (TOUCHSTONE)	
Prop. const. (ed.) line 67mm mask measured s2n	
Length difference between THRU and LINE 6/ mm	
Transmission line length in 3D EM model 67 mm	
Extract Cancel Specials Loghie He	P

1(a) Extracts complex permittivity from measurement of two lines* (Thru, Line) using 3D EM line model.

1(b) Extracts complex permittivity from <u>directly measured</u> S-parameters of a <u>section of homogeneous transmission</u> <u>line</u> (transmission coefficient egL) stored in Touchstone file using 3D EM line model. Multiline calkit and NIST Multiline TRL calibration technique is usually used for this option.

1(c) Extracts DUT S-parameters using just Thru and Line calibration standards*.

* 1st tier calibration at coaxial line is required.

Curve Fitting Comparison - S21 Results

Dielectric Loss - Curve Fitting Nth Orders - S21 Results

Where Does the Power go? Separating the Components

Where Does the Power go? Monitoring the Fields

Real Case Example

Materials properties Dielectric: eps=3.6, tgd=0.01 Debye 3rd order Copper = 4.1e7 S/m with inclusion of surface roughness with TSI (H&J model)

S-Parameter and TDR Results

More information: webinars

https://www.cst.com/Events/Webinars#

Questions?